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Problem Set 2

This second problem set is designed to make you a master of inductive proofs.  It starts off with 
some simpler problems intended to acclimate you to an inductive climate and concludes with 
some  pretty  impressive  results.   I  hope  that  you  have  as  much  fun  working  through  these 
problems as we did designing them.

Start this problem set early.  It contains six problems (plus one checkpoint question, one survey 
question, and one extra-credit question), several of which require a fair amount of thought.  I 
would suggest reading through this problem set at least once as soon as you get it to get a sense of 
what it covers.

As much as you possibly can, please try to work on this problem set individually.  That said, if 
you do work with others, please be sure to cite who you are working with and on what problems. 
For more details, see the section on the honor code in the course information handout.

In any question that asks for a proof, you  must provide a rigorous mathematical proof.  You 
cannot draw a picture or argue by intuition.  You should, at the very least, state what type of proof 
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

If you are asked to prove something by induction, you may use either weak induction or strong 
induction.   You  should  state  your  base  case  before  you prove  it,  and  should  state  what  the 
inductive hypothesis is before you prove the inductive step.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 150 possible points and ten questions.  It is weighted at 7% of your total 
grade.  The earlier questions serve as a warm-up for the later problems, so do be aware that the 
difficulty of the problems does increase over the course of this problem set.

Good luck, and have fun!

Checkpoint Questions Due Monday, April 16 at 2:15PM

Remaining Questions Due Friday, April 20 at 2:15 PM
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Checkpoint Question: Tiling with Triominoes* (25 Points if Submitted)

Write your solutions to the following problems and submit them by this Monday, April 16th at the start 
of  class.   These  problems will  be graded based on whether  or  not  you submit  it,  rather  than  the  
correctness of your solutions.  We will try to get these problems returned to you with feedback on your 
proof style this Wednesday, April 18th.  Submission instructions are on the last page of this problem set.

Please make the best effort you can when solving these problems.  We want the feedback we give 
you on your solutions to be as useful as possible, so the more time and effort you put into them, the 
better we'll be able to comment on your proof style and technique.  Note that this question has three 
parts.

Suppose that we are given a set of right triominoes, blocks with this shape: 

Suppose that we are given a square grid of size 2n × 2n and want to  tile it with right triominoes by 
covering the grid with triominoes such that all triominoes are completely on the grid and no triominoes 
overlap.  Here's an attempt to cover an 8 × 8 grid with triominoes, which fails because not all squares in 
the grid are covered:

It turns out that it is impossible to completely tile the 2n × 2n figure with these triominoes because there 
are 4n squares in a 2n × 2n figure, but any figure that can be tiled with triominoes must have a multiple 
of three squares in it.  However, 4n is not a multiple of three.  Interestingly, though, if we remove some 
square from the 2n × 2n grid, then there are a total of 4n – 1 squares to cover, which is a multiple of 
three.

i. Prove, by induction on n, that 4n – 1 is a multiple of three.

ii. It  is  necessary that  a  figure  have  a  multiple  of  three  squares  in  it  to  be  tiled  with  right 
triominoes, in that if it does not contain a multiple of three squares there cannot possibly be a 
way to fully tile it.  However, it is not true that it is sufficient that if a figure has a multiple of 
three squares in it that it must can be tiled with right triominoes.  Give an example of a shape 
that contains an multiple of three squares but cannot be tiled by right triominoes.

(continued on next page)

* I originally heard this classic problem from David Gries of Cornell University.  The terminology used here is borrowed 
from Discrete Math and its Applications, Sixth Edition by Kenneth Rosen.
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Amazingly, it turns out that it is always possible to tile any 2n × 2n grid that's missing exactly one 
square with right triominoes.  It doesn't matter what n is or which square is removed; there is always a 
solution to the problem.  For example, here are all the ways to tile a 4 × 4 grid that has a square  
missing:

iii. Prove that any 2n × 2n grid with one square removed can be tiled by right triominoes.
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The remainder of these problems should be completed and returned by Friday, April 20 at the start of  
class.

Problem One: Telescoping Sums (8 points)

Consider a sequence of n + 1 numbers x0, x1, x2, …, xn, where n ≥ 0.  Prove, by induction, that

∑
i=1

n

(x i− x i−1)= xn− x0

Sums of this form are called telescoping sums and have many applications in computer science.

Problem Two: Nim (16 points)

Nim is a family of games played by two players.  Each game works by maintaining several piles of 
stones.  Players alternate taking turns.  In each turn, the player removes any (nonzero) number of stones 
from any one pile of their choice.  If it's a player's turn and no stones are left in any of the piles, then  
the player loses the game.

Prove that if the game is played with two piles of stones, each of which begins with the same number 
of stones, then the second player can always win the game.

Problem Three: Contract Rummy (20 points)

Contract rummy is a card game for any number of players (usually between three and five) in which 
players are dealt a hand of cards and, through several iterations of drawing and discarding cards, need 
to accumulate sets and sequences.  A set is a collection of three cards of the same value, and a sequence 
is a collection of four cards of the same suit that are in ascending order.  The game proceeds in multiple 
rounds, in each of which the players need to accumulate a different number of sets and sequences.  The 
rounds are:

• Two sets (six cards)

• One set, one sequence (seven cards)

• Two sequences (eight cards)

• Three sets (nine cards)

• Two sets and a sequence (ten cards)

• One set and two sequences (eleven cards)

• Three sequences (twelve cards)

Notice that in each round, the requirements are such that the number of cards required increases by one. 
It's interesting that it's always possible to do this, since the total number of cards must be made using 
just combinations of three cards and four cards.

Prove, by induction, that any natural number greater than or equal to six can be written as 3x + 4y for 
natural numbers x and y (remember that 0 is a natural number).
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Problem Four: Fun with Sums (20 Points)

Using induction, we saw how to prove that

∑
i=1

n

i=
n(n+1)

2

This allows us to replace a sum with a much simpler formula.  In this problem, you will do the same for 
two other sums.

i. Find a simple formula for the sum of the first n odd natural numbers, then prove by induction 
that your formula is correct.  Your formula should not contain a summation (either as a Σ or as a 
sum containing an ellipsis).

ii. Find a simple formula for the sum of the first n even natural numbers, then prove by induction 
that your formula is correct.  Remember that 0 is the first even natural number.  Your formula 
should not contain a summation (either as a Σ or as a sum containing an ellipsis).

iii. In class, before we proved the result about the sum of the first n positive natural numbers, we 
drew a picture that illustrated why the result ought to be true.  For either (i) or (ii), provide a 
justification for your answer without using induction.  You don't need to provide a formal proof 
here; simply explain the intuition behind the result through some other means.

Problem Five: Repeated Squaring (24 points)

In  many  applications  in  computer  science,  especially  cryptography,  it  is  important  to  compute 
exponents efficiently.   For example,  the RSA public-key encryption system, widely used in secure 
communication,  relies  on  computing  huge  powers  of  large  numbers.   Fortunately,  there  is  a  fast 
algorithm called repeated squaring for computing xy in the special case where y is a natural number.

The repeated squaring algorithm is based on the following function RS:

RS ( x , y)={
1 if y=0

RS ( x , y /2)2 if y is even  and y>0

x⋅RS ( x ,( y−1)/2)
2 if y is odd  and y>0

For example, we could compute 210 using RS(2, 10) follows:

In order to compute RS(2, 10), we need to compute RS(2, 5)2.
In order to compute RS(2, 5), we need to compute 2·RS(2, 2)2.

In order to compute RS(2, 2), we need to compute RS(2, 1)2.
In order to compute RS(2, 1), we need to compute 2·RS(2, 0)2.

By definition, RS(2, 0) = 1
so RS(2, 1) = 2·RS(2, 0)2 = 2·12 = 2.

so RS(2, 2) = RS(2, 1)2 = 22 = 4.
so RS(2, 5) = 2·RS(2, 2)2 = 2·42 = 32.

so RS(2, 10) = RS(2, 5)2 = 322 = 1024.

The reason that the RS function is interesting is that it can be computed much, much faster than simply 
multiplying x by itself y times.  Since RS is defined recursively in terms of RS with the y term cut in 
half, RS can be evaluated using approximately log2 y multiplications.  (You don't need to prove this).

Prove that for any x   and any ∈ ℝ y  , ∈ ℕ RS(x, y) = xy.  Note that since x is a real number, you cannot 
prove this by induction on x.  However, you may use induction on y.
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Problem Six: Tournament Graphs (32 points)

A tournament is a contest among n > 0 players.  Each player plays a game against each other player, 
and either wins or loses the game (let's assume that there are no draws).  A tournament graph is a 
graph representing the result of a tournament, where each node corresponds to a player and each edge 
(u,  v) means that player u won her game against player v.  For example, here is a simple tournament 
graph for five players:

A

B

C

D

E

A tournament winner is a player in a tournament who, for each other player, either won her game 
against that player, or won a game against a player who in turn won against that player.  For example,  
in the above graph, B, C, and E are tournament winners.  

Prove that every tournament graph has a tournament winner.

Problem Seven: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no 
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about 
how we're doing.

i. How hard did you find this problem set?  How long did it take you to finish?

ii. Does that seem unreasonably difficult or time-consuming for a five-unit class?

iii. Did you attend Monday's problem session?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you think 
we're doing well?
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Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance 
labeled “Stanford Engineering Venture Fund Laboratories.”   There will  be a  clearly-labeled 
filing cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list
(cs103-spr1112-submissions@lists.stanford.edu)  with  the  string  “[PS2]”  somewhere  in  the 
subject line.

If you are an SCPD student, we would strongly prefer that you submit solutions via email, especially 
for  the  checkpoint  problems,  so  that  we can  get  your  solution  graded and returned as  quickly  as 
possible.  Please contact us if this will be a problem.

Extra Credit Problem: Egyptian Fractions

The Fibonacci sequence is named after Leonardo Fibonacci, an eleventh-century Italian mathematician 
who is credited with introducing Hindu-Arabic numerals (the number system we use today) to Europe 
in his book Liber Abaci.  This book also contained an early description of the Fibonacci sequence, from 
which the sequence takes its name.

In lecture, we saw a surprising connection between Fibonacci numbers and  continued fractions, an 
system for writing out rational numbers.  Interestingly, Liber Abaci also described a separate notation 
for fractions called Egyptian fractions, a method for writing out fractions that has been employed since 
ancient times.*  An Egyptian Fraction is a sum of distinct fractions whose numerators are all one (the 
so-called unit fractions).  For example:

1
3
=

1
2
+

1
6

2
15

=
1
10

+
1
30

7
15

=
1
3
+

1
8
+

1
120

2
85

=
1
51

+
1

255

One  way  of  finding  an  Egyptian  fraction  representation  of  a  rational  number  is  to  use  a  greedy 
algorithm that works by finding the largest unit fraction at any point that can be subtracted out from the 
rational number.  For example, to compute the fraction for 42 / 137, we would start off by noting that 
1 / 4 is the largest unit fraction less than 42 / 137.  We then say that

42
137

=
1
4
+(

42
137

–
1
4
)=

1
4
+

31
548

We then repeat this process by finding the largest unit fraction less than 31 / 548 and subtracting it out. 
This number is 1/18, so we get

42
137

=
1
4
+(

42
137

–
1
4
)=

1
4
+

1
18

+(
31
548

–
1
18

)=
1
4
+

1
18

+
5

4932

* There is archaeological evidence (the Rhind papyrus) that shows that the ancient Egyptians were using Egyptian 
fractions over three thousand years ago.

mailto:cs103-spr1112-submissions@lists.stanford.edu
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The largest unit fraction we can subtract from 5 / 4932 is 1 / 987:

42
137

=
1
4
+

1
18

+(
5

4932
−

1
987

)=
1
4
+

1
18

+
1

987
+

1
1622628

And at this point we're done, because the leftover fraction is itself a unit fraction.

Prove that the greedy algorithm for continued fractions always terminates for any rational number in 
the range (0, 1) and always produces a valid Egyptian fraction.  That is, the sum of the unit fractions 
should be the original number, and no unit fraction should be repeated.  This shows that every rational 
number in the range (0, 1) has at least one Egyptian fraction representation.


